

www.renold.com

The WM Series range of products has been designed and built to a modular form to allow the combination of other Renold products to extend the torque, ratio and speed range. Each unit is designed for use with NEMA and IEC electric motors, with B5 and B14 flanges.

Applications:

- Conveyors
- Mining
- Lumber
- Textiles
- Materials Handling
- Packaging Machinery
- Food Process Machinery
- Water Treatment
- Foundry Equipment

Section of electron beam welded wormwheel rim and centre showing the fusion of the bronze wormwheel rim onto the cast iron centre. This high security fit allows transmission of power under shock load conditions.

Contents

	Page No
WM Series Product Features	2
General Specifications	5
Product Design Variations	6 - 7
Selection Details	8
Nominal & Actual Ratios	9
Load Classification by Application	10
Overhung & Thrust Loads	11 - 13
Installation & Maintenance	14
Lubrication Details	15
Mounting & Handing Details	16 - 17
Selection Data	18 - 31
Dimensions - Speed Reducer Units	32 - 35
Oil Capacities	32 - 35

Introduction

For over 100 years, Renold has played a leading role in the development of worm gearing and perfected the design and manufacture of HOLROYD worm gears, such that today the name HOLROYD is renowned world-wide for the quality and reliability of its products.

Renold WM Series worm gear units are available to satisfy the industrial demand for reliable and efficient speed reducers.

Renold WM Series worm gear units are single reduction and utilize the unique Renold patented electron beam welded wheel rims. Double reduction units are available - contact Renold.

Standard speed reduction ratios range from 5:1 up to 70:1 for single reduction worm gear units.

All WM Series worm gear units can be supplied in various standard types and assemblies and are suitable for combining with most of the Renold range of fixed and variable speed products.

Most of the units included in the WM Series range are suitable for mounting in alternative positions. Available assemblies are detailed for each type of unit and also mounting position variations where applicable.

WM Series reducers are supplied with a hollow shaft as standard except for the 9" CRS which has a solid shaft. Plug-in output shafts, both single and double, are available for both standard mount and flange mount.

All of the WM Series units can be fitted with standard flange mounted electric motors.

The WM Series units are available from 4" to 9" centre distance and this heavy duty unit range is the result of continuing research and development.

Gear Case

The gear cases are of close grained cast iron with all joints and bearing bores accurately machined to ensure oil tightness and precise gear location.

Wormshaft and Wormwheel

The worm is integral with its shaft and manufactured from alloy steel, casehardened on the threads and ground and polished on the thread profiles.

The wormwheel rim is made from bronze complying with BS 1400 PB2-C (centrifugally cast) and secured to the cast iron centre by the electron beam welding process.

The Holroyd gear form used in the WM Series gear units corresponds to British Standard recommendations but, in addition, has an exclusive feature which consists principally of an important modification to the worm threads and wheel teeth which confers additional valuable properties to gear performance. This ensures that our gears will run correctly and transmit true uniform angular velocity when running under all load conditions. The modification also gives a tapered oil entry gap between the teeth, which drags the lubricant between the surfaces and results in more efficient lubrication. Standard worm gears have right-hand threads but lefthand threads can be made to order.

Shafts

Standard shaft extensions are to imperial dimensions, but metric shaft extensions are also available. The output shaft is manufactured in carbon steel, but if required by applicational conditions, can be made from high tensile steel, in single or double extension.

WM Series unit sizes 100mm to 200mm are supplied as hollow output shaft type as standard and all output shafts are plug-in design, single and double extension.

All input shafts in the WM Series range are standard double extension and are metric dimensions at one end and American standard - inch at the other.

Unless otherwise requested, the imperial extension will be the exposed input extension.

Preferred Ratios

Certain gear ratios have been nominated as preferred ratios and are shown in bold on pages 28 to 41. This has been done with a view to providing a competitive lead time.

Bearings

Standard metric taper/roller bearings are fitted throughout the WM Series range of units in both single and double extension shaft options.

Oil Seals

Semi-dual lip oil seals are fitted to all hollow output shaft units and single lip seals are fitted to the input shaft of all unit sizes, the output of WM9 unit range and all agitator unit types.

Dry Well Feature

The WM Series unit sizes 100mm to 900mm can be factory fitted with a 'dry-well' adaption at the output shaft to create a non oil leak unit. The output shaft bearing within the dry well is grease lubricated.

The non leak feature is particularly important on mixer drive applications in food and chemical plants where the unit shaft is vertically down.

Lubrication

Gears and bearings are positively lubricated by oil from the sump in the underdriven and overdriven versions at normal motor speeds. With the vertical and agitator types, grease lubrication is necessary to the wheeline bearings.

For lower speeds it may be necessary to consider grease lubrication of certain bearings and in this instance it is advisable to consult with Renold Engineers. Full lubrication details can be found under the "Installation & Maintenance" section.

Cooling

Maximum heat dissipation by air cooling is carried out by a radial fan directing air over the ribbed gear case. Where applicational circumstances permit, standard units can be supplied without a fan.

Backstop

Sprag clutch backstops can be fitted to most units to prevent unit run back when required.

Double Reduction Units

Two stage, double reduction gear units are available with ratios from 75:1 to 4900:1.

Hollow output shaft unit showing standard American extension input shaft and metric extension at the fan end.

Standard hollow output shaft with semi dual lip oil seal for added oil retention.

Underdriven unit with standard plug-in output shaft. Single and double extension shafts are available.

Sprag Clutch, anti run-back assembly fitted to the fan extension end of the input shaft, to prevent unit run back. The Sprag Clutch can be supplied as a kit for retro fitting at any time.

Dry well adaption fitted at the output of the WM Series unit. The non leak feature is particularly important on mixer applications in the food and chemical Industry. Unit fitted with output location flange and double extension output shaft, one standard extension and one longer than standard compensating for the flange.

WMA - Agitator unit with solid output shaft down. The unit is shown with the dry well feature. The output shaft bearings have a greater bearing span to allow for higher external loads imposed by mixer and agitator blades.

Agitator unit with solid output shaft up, particularly suited for cooling fan drives.

Selection of Worm Gears

To select a worm gear unit the following basic information must be known and, if we are to make the selection, should be submitted in full to our Technical Sales Department.

Power

- a) Prime mover, type and output power (HP).
- b) Gear unit input and output power required (HP).
- c) For input speeds below 250 rev/min consult our Technical Sales Department, giving details of required output torque (lbf.ins) and diameter of driven shaft (ins).

Speed

Gear unit input and output rev/min.

Duty

- a) The characteristics of the drive eg. degree of impulsiveness of the driven load.
- b) Duration of service in hours/day.
- c) Starting load (HP) and number of starts per day.
- d) For intermittent duty, reversing or shock loading, state normal power (HP) and frequency.
- Disposition and details of external loads imposed on input/output shafts.
- f) Working conditions, i.e. clean, dusty, moist, abnormal temperatures etc.

If the operating conditions are in any way unusual it is advisable to consult our Technical Sales Department.

Enquiry/Ordering Procedure

At the order or enquiry stage, please quote the catalogue reference, shaft assembly number and nominal ratio or exact ratio if this is important (see tables). Non-standard mounting positions should be indicated with a sketch. Where a double extension wormwheel shaft is required, please state any special requirements regarding alignment of keyways.

Mechanical Rating

The mechanical powers listed are those which the WM Series class units will transmit for 10 hours each day and correspond to a service factor of 1,0. Where non-uniform loading or a working day other than 10 hours is involved, a service factor fd should be applied to the selection power or torque which is taken from Table 2.

High numbers of starts per hour also influence the mechanical selection. Table 3 shows the starts factor fs which should also be applied to the selection power or torque.

For guidance, a comprehensive list of the various load conditions for a number of applications is given in Table 1. When confirming the mechanical selection powers therefore, the rating must be equal to or greater than - calculated power or torque demand x application service factor fd (Table 1 and Table 2) x starts factor fs (Table 3). Ratings based on 10,000 hours.

Efficiencies

The efficiency figures are approximate only and are those that could be expected from a gearbox which is fully run-in and operating under full load with the lubricant at its full working temperature.

For intermittent rating where the lubricant may remain comparatively cool, the efficiency may be somewhat lower due to the increased oil churning losses associated with the higher viscosity of the cool oil. We shall be pleased to advise on any particular application.

Thermal Rating

The thermal ratings given are those which the gear units will transmit at an ambient temperature of 20°C (68°F), when the heat generated within the gearbox is being dissipated at the same rate. Whilst these ratings can be exceeded under start up conditions, this situation could lead to overheating and subsequent damage if continuously applied.

Thermal torque ratings do not relate to mechanical gear life and are not affected by running time or momentary shock loads.

If the ambient temperature is likely to exceed 20°C (68°F), this situation will have to be taken into account in the selection procedure. This is done by applying the thermal service factor given in Table 4 when calculating the selection output torque.

Eg. Thermal selection torque = continuous torque requirement x thermal service factor ft. Where intermittent running is involved it is possible the thermal limitation can be ignored, such as on a crane or winch application and when this type of operation is being considered; full applicational details should be given to Renold for assessment.

Selection Procedure

The ratings tables for the single reduction wormgear units provide mechanical ratings in terms of input and output power in HP and mechanical and thermal output torque ratings in lbf.ins.

Tables 1 and 2 list the service factors relative to the operational hours each working day and the load classification with regard to the nature of the service. When determining the selection power, the actual power absorbed and not the rating of the prime mover should be used.

The procedure is as follows for single reduction units:-

 a) Establish the ratio required by dividing the input speed by the output, choosing the nearest nominal ratio available from tables 8 and 9.

Gear ratio = Input speed rev/min Output speed rev/min

- b) Determine the load classification from Table 1 and the corresponding mechanical service factor fd from Table 2 and the starts factor fs from Table 3.
- Multiply the actual power absorbed by the mechanical service factor fd and carefully select the size of unit by comparing this against the mechanical rating appropriate to the ratio and input speed.
 Selection Output Torque = actual output torque x fd x fs

or

Selection Output Torque = absorbed power x 63,025 x fd x fs output speed (rev/min).

d) For continuous operation, check that the thermal rating is at least equal to the thermal torque requirement. External cooling can be offered to increase thermal rate.

Thermal torque requirement = continuous torque x thermal service factor ft from Table 4.

e) Check the capability of the unit to withstand external loads applied to the output shaft. See Tables 5 and 6.

Nominal and Actual Ratios

Single Reduction

Gear Size	WM100	WM125	WM160	WM200
Nominal Ratio		Actua	Ratio	
5	5	5	5.38	5
7.5	7.25	7.25	7.80	7.20
10	9.66	9.33	10.25	9.75
12.5	12.33	12	13.25	12
15	15.5	15.5	15.33	14.33
20	20.5	20	21.5	20
25	25	24	26	24
30	29	29	32	29
35	35	34	37	34
40	39	39	42	39
45	45	44	48	44
50	49	44	53	49
60	59	59	63	59
70	69	69	74	69

Preferred Ratios

Preferred ratios have been chosen with a view to providing a competitive lead time , the non preferred ratios have been shown in italics.

Load Classification by Application

Μ

NNHNNHNN

(2) (2) (2) (3) (4)

SMSSSMS* ∗

S S S

S M M

S *

M M S

M M S H M

M S M M S H

н

Table 1

Agitators	
Pure liquids	S
Liquids and solids	M
Liquids-variable density	M
Blowers	
Centrifugal	S
Lohe	м
Vane	c
Prowing and Dictilling	2
Bottling machinen	c
Brown kottles continuous duty	2
Brew kettles-continuous duty	2
Cookers-continuous duty	S
Mash tubs-continuous duty	S
Scale hopper-frequent starts	M
Can filling machines	s
Cane knives (1)	M
Car dumpers	н
Car pullers	M
Clarifiers	S
Classifiers	M
Clay working machinery	
Brick press	н
Briquette machine	ü
Clay working machinony	M
Dug will	
Pug mili	IVI
Compressors	~
Centrifugai	
Lobe	M
Reciprocating - multi-cylinder	M
Reciprocating - single cylinder	
neeproceeding single cylinder	н
Conveyors - uniformly loaded of	H r fed
Conveyors - uniformly loaded of Apron	H r fed S
Conveyors - uniformly loaded of Apron Assembly	H r fed S S
Conveyors - uniformly loaded of Apron Assembly Belt	H r fed S S S
Conveyors - uniformly loaded of Apron Assembly Belt Bucket	H r fed S S S S
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain	H s s s s s
Conveyors - uniformly loaded of Apron Assembly Belt Bucket Chain Elinht	H s s s s s s
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven	H s s s s s s s
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Sreaw	H r fed S S S S S S S S
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - boout duty	H s s s s s s s s s s s
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty cot uniformable fool	H s s s s s s s s s s
Conveyors - uniformly loaded or Apron Apron Belt Bucket Blucket Flight Oven Screw Conveyors - heavy duty not uniformly fed	H fed S S S S S S
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty not uniformly fed Apron	H fed S S S S S S S S M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly	H fed S S S S S S S S S S S S
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt	H fed S S S S S S M M M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty root uniformly fed Apron Assembly Belt Bucket	H fed S S S S S S M M M M M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt Bucket Chain	H fed S S S S S S M M M M M M M
Conveyors - uniformity loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty root uniformity fed Apron Assembly Belt Bucket Chain Flight	H fed S S S S S S M M M M M M M M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt Bucket Chain Flight Live roll	H fed S S S S S S M M M M M M X M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty rot uniformly fed Apron Assembly Belt Bucket Chain Flight Live roll Oven	H r fed S S S S S S S M M M M M M M M M M M M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating	H r fed S S S S S S S S S M M M M M M M M M M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating Screw	H r fed S S S S S S S S S M M M M M M M M M M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating Screw Shaker	H r fed S S S S S S S S S M M M M M M H M H M H
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty oven Screw Conveyors - heavy duty Oven Apron Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating Screw Shaker Crane Drives - not dry dock	H r fed S S S S S S S S S M M M M M M M M M M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating Screw Shaker Crane Drives - not dry dock Main hoists	H r fed S S S S S S S S S S M M M M M M M M M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty Oven Screw Conveyors - heavy duty Oven Apron Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating Screw Shaker Crane Drives - not dry dock Main hoists Bridne travel	H r fed S S S S S S S S S S S S S S S S S S S
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating Screw Shaker Crane Drives - not dry dock Main hoists Bridge travel	H r fedd S S S S S S S S S S S S S S S S S S
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty Oven Screw Conveyors - heavy duty Oven Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating Screw Shaker Crane Drives - not dry dock Main hoists Bridge travel	H r fed S S S S S S S S S S S S S S S S S S S
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating Screw Shaker Crane Drives - not dry dock Main hoists Bridge travel Trolley travel Crushers	H fedd S S S S S S S S S S S S S S S S M M M M
Conveyors - uniformly loaded or Apron Assembly Belt Bucket Chain Flight Oven Screw Conveyors - heavy duty not uniformly fed Apron Assembly Belt Bucket Chain Flight Live roll Oven Reciprocating Screw Shaker Crane Drives - not dry dock Main hoists Bridge travel Trolley travel Crushers Ore	Hed ssssss sssss MMMMM HMH s** H:

Sugar (1)
Dredges
Cable reels
Conveyors
Cutter head drives
Jig drives
Manoeuvring winches
Pumps
Screen drive
Stackers
Utility winches
Dry dock cranes
Main hoist
Auxiliary hoist
Boom, luffing
Rotating, swing or slew
Tracking, drive wheels
Elevators
Bucket - uniform load
Bucket - heavy load
Bucket - continuous
Centrifugal discharge
Escalators
Freight
Gravity discharge
Man lifts
Passenger
Extruders (plastic)
Film
Shoot
Costing
Pode
Tubing
Riow mouldors
Bro plasticiors
Fie-plasticiers
Fans
Centrifugal
Cooling towers
induced draft
Forced draft
induced draft
Large, mine etc.
Large, industrial
Light, small diameter
Feeders
Apron
Belt
Disc
Reciprocating
Screw
Food industry
Beef slicer
Cereal cooker
Dough mixer
Meat grinder
Generators - not welding
Hammer mills
Hoists
Heavy duty

Service Factors

Table 2 (Service Factor f_D)

	Driven machinery characterisitics				
Prime mover	Duration	Steady	Medium	Highly	
(Drive input)	Service	load	impulsive	impulsive	
Electric, Air & Hydraulic Motors or Steam Turbine (Steady input)	Intermittent - 3hrs/day max 3 - 10 over 10	0.90 1.00 1.25	1.00 1.25 1.50	1.50 1.75 2.00	
Multi-cylinder I.C. engine (Medium impulsive input)	Intermittent - 3hrs/day max 3 - 10 over 10	1.00 1.25 1.50	1.25 1.50 1.75	1.75 2.00 2.25	
Single-cylinder I.C. engine (Highly impulsive input)	Intermittent - 3hrs/day max 3 - 10 over 10	1.25 1.50 1.75	1.50 1.75 2.00	2.00 2.25 2.50	

Table 3 Factor for Starts/Hours (f_s)

Maximum number of starts per hour	5	50	100	300
Starts Factor f _S	1.0	1.1	1.15	1.2

Medium duty	м	Individual drives
Skip hoist	M	Reversing
Laundry		Wire drawing and flattening
Washers - reversing	M	Wire winding machine
Tumblers	M	Mills, rotary type
Line shafts		Ball (1)
Driving processing equipment	M	Cement kilns (1)
Light	S	Dryers and coolers (1)
Other line shafts	S	Kilns other than cement
Lumber industry		Pebble (1)
Barkers, hydraulic, mechanical	M	Rod, plain & wedge bar (
Burner conveyor	M	Tumbling barrels
Chain saw and drag saw	H	Mixers
Chain transfer	H	Concrete mixers continuo
Craneway transfer	н	Concrete mixers intermitt
De-barking drum	н	Constant density
Edger feed	IVI	Variable density
Gang leed	IVI M	Chillor
		Oil well numping
Live folis		Baraffin filter proce
Log baul-incline	- H	Potany kilns
Log haul-well type	ü	Paper mills
Log turning device	ü	Agitators (mixers)
Main log conveyor	ü	Barker-auxiliaries hydraul
Off bearing rolls	м	Barker-mechanical
Planer feed chains	M	Barking drum
Planer floor chains	M	Beater and pulper
Planer tilting hoist	M	Bleacher
Re-saw merry-go-round conveyor	M	Calenders
Roll cases	н	Calenders-super
Slab conveyor	н	Converting machine exce
Small waste conveyor-belt	S	cutters, platers
Small waste conveyor-chain	M	Conveyors
Sorting table	M	Couch
Tipple hoist conveyor	M	Cutters, platers
Tipple hoist drive	M	Cylinders
Transfer conveyors	M	Dryers
Transfer rolls	M	Fell stretcher
Tray drive	M	Fell whipper
Irimmer feed	IVI	Jordans
waste conveyor	IVI	Log naul
Reading roll		Presses
Bunch pross goor drivon		Stock chost
Notching proce bolt drive	*	Suction roll
Plate planners	н	Washers and thickeners
Tanning machine	ü	Winders
Other machine tools	п	Printing process
Main drives	м	Pullors
Auxiliary drives	ŝ	Barge baul
Metal mills	5	Pumps
Drawn bench carriage		Centrifugal
and main drive	м	Proportioning
Pinch, drver and scrubber		Reciprocating
rolls, reversing	*	single acting:
Slitters	м	3 or more cylinders
Table conveyors non-		double acting:
reversing group drives	M	2 or more cylinders
		-

	н	single acting: 1 or 2 cylinders
	*	double acting: single cylinder
ng machine	M	Rotary - gear type
	M	Rotary - lobe, vane
		Rubber and plastics industries
	M	Crackers (1)
	M	Laboratory equipment
	М	Mixed mills (1)
	М	Refiners (1)
	М	Rubber calenders (1)
1)	M	Rubber mill, 2 on line (1)
	н	Rubber mill, 3 on line (1)
		Sheeter (1)
us	M	Tyre building machines
ent	M	Tyre and tube press openers
	S	Tubers and strainers (1)
	M	Warming mills (1)
		Sand muller
	M	Screens
	*	Air washing
	M	Rotary, stone or gravel
	M	Travelling water intake
		Sewage disposal equipment
	M	Bar screens
ic	M	Chemical feeders
	н	Collectors
	н	Dewatering screws
	M	Scum breakers
	S	Slow or rapid mixers
	M	Thickeners
	н	Vacuum filters
pt		Slab pushers
	IVI	Steering gear
	2	Stokers
		Sugar industry
	n N	Carle Krives (1)
		Mille (1)
	M	Toxtile industry
	Π.	Batchers
	м	Calenders
	Π.	Cards
	M	Dry cans
	M	Drvers
	M	Dveing machinery
	M	Looms
	М	Mangles
	M	Nappers
	*	Pads
		Range drives
	н	Slashers
	-	Soapers
	S	Spinners
	M	Tenter trames
		wasners
		Winders
	IVI	vvindiass
	54	

s s

HMHMMMSM* *

M M M

S M S

S M M M

MMMMMMMMM MMMMMMMM *

S = Steady

- = Medium Impulsive Μ
- н = **Highly Impulsive**
 - Refer to Renold =
- (1) = Select on 24 hours per day service factor only.
- (2) = Use service factor of 1.00 for any duration of service.
- (3) = Use service factor of 1.25 for any duration of service.
- (4) = Use service factor of 1.50 for any duration of service.

Note

Machinery characteristics and service factors listed in this catalogue are a guide only. Some applications (e.g. constant power) may require special considerations. Consult Renold.

Table 2 Thermal Service Factor fT

Ambient °C	10	20	30	40	50	60
Temp °F	50	68	86	105	122	140
Factor f _T	0.87	1.0	1.16	1.35	1.62	1.97

For more information telephone us - Canada: Toll Free 800.265.9970. USA: Toll Free 800.850.8141

Overhung and Thrust Loads

Output shafts of worm gear units are frequently fitted with a spur pinion, chain pinion or belt pulley causing an overhung load to be imposed on the output shaft and bearings. These loads can generally be sustained by the gear unit; however, if the load is greater than the maximum allowable load for the unit, it may be necessary to either select a larger unit or lessen the effect of the load on the shaft bearings. This can be done in two ways. The pinion can be mounted on a shaft in its own bearings and the shaft coupled to the gear unit; or the wheel shaft may be extended beyond the overhung load and fitted with an outboard bearing. In order to obtain the best possible arrangement for a particular application (where large overhung loads are anticipated) customers are advised to submit details of the load to our Sales Technical Staff for their consideration.

In the interests of good design, the overhung member should be fitted as close as possible to the gear case in order to minimise the stresses and reduce the deflecting moment on the unit.

The maximum imposed axial thrust and overhung loads to which the units can be subjected are given in Tables 5 and 6.

Imposed axial thrust loads can also be minimised by the use of flexible couplings on the input and output shafts.

For drives where both imposed thrust and overhung loads are encountered, it is advisable to consult our Technical Sales Staff.

Where a double extension shaft is fitted, the maximum overhung loads listed apply in full to each shaft extension.

The overhung load may be calculated by the following formula:

```
resultant overhung load = (lbf)
```

Where P = Power absorbed at output shaft (HP)

- S = Speed of output shaft in rev/min
- D = Pitch circle diameter of chain sprocket, spur or helical gear, or belt sheave in ins.
- F = Overhung drive application factor as follows:

Chain sprocket	1,00
Spur or helical gear	1,25
Vee sheave	1,50
Flat belt sheave	2,00

Unit	Dimension X ins
Size	Standard Shaft
WM4	6.34
WM5	7.60
WM6	8.58
WM7	9.37
WM8	9.61
WM9	10.55

Output Shaft Overhung Loads - Single Reduction

Table 5 - Output Shaft Overhung Loads (lbs)

At 1750 rpm input

Ratio	Output		Gear Unit	Reference	
	Speed	100	125	160	200
5/1	350	2260	2810	2540	5840
7.5/1	233	2650	3410	4062	7210
10/1	175	2940	3790	4510	8050
12.5/1	140	3100	4060	4980	8460
15/1	117	3050	4320	5300	9190
20/1	88	3070	4390	5350	10650
25/1	70	3010	4430	5400	11310
30/1	58	2930	4170	5210	12000
35/1	50	3020	4170	5180	12360
40/1	44	3050	4310	5250	12360
45/1	39	3060	4350	5310	12360
50/1	35	3080	4400	5360	12360
60/1	29	3110	4460	5440	12360
70/1	25	3130	4520	5510	12360

At 1160 rpm input

Ratio	Output Gear Unit Reference				
	Speed	100	125	160	200
5/1	232	2500	2900	2320	5960
7.5/1	155	2970	3820	4530	8000
10/1	116	3090	4250	5130	9038
12.5/1	93	3040	4320	5300	9490
15/1	77	2990	4200	5240	10310
20/1	58	3020	4270	5190	11960
25/1	46	2930	4320	5240	12000
30/1	39	2870	3980	5000	12360
35/1	33	2950	4070	4970	12360
40/1	29	3000	4180	5050	12360
45/1	26	3010	4230	5140	12360
50/1	23	3030	4290	5210	12360
60/1	19	3070	4370	5330	12360
70/1	17	3100	4450	5420	12360

Output Shaft Axial Thrust Loads - Single Reduction

Table 6 - Output Shaft Axial Thrust Loads (lbs)

At 1750 rpm input

Ratio	Output		Gear Unit	it Reference		
	Speed	100	125	160	200	
5/1	350	2030	2060	1610	4010	
7.5/1	233	2690	3110	2950	6260	
10/1	175	3170	3690	3690	7450	
12.5/1	140	3510	4010	4200	7940	
15/1	117	3840	4380	4730	9020	
20/1	88	4490	5240	5770	11140	
25/1	70	4770	5760	6390	11950	
30/1	58	4800	5950	6768	12000	
35/1	50	4950	6460	7220	12360	
40/1	44	4950	6920	7710	12360	
45/1	39	4950	7200	8230	12360	
50/1	35	4950	7420	8640	12360	
60/1	29	4950	7420	9380	12360	
70/1	25	4950	7420	9600	12360	

At 1160 rpm input

Ratio	Output	Gear Unit Reference					
	Speed	100	125	160	200		
5/1	232	2160	2110	1450	4080		
7.5/1	155	2980	3420	3170	6750		
10/1	116	3510	4090	4080	8290		
12.5/1	93	3900	4440	4620	8820		
15/1	77	4300	4880	5240	10030		
20/1	58	4800	5880	6460	12000		
25/1	46	4950	6480	7170	12360		
30/1	39	4950	6680	7820	12360		
35/1	33	4950	7200	8020	12360		
40/1	29	4950	7420	8710	12360		
45/1	26	4950	7420	9280	12360		
50/1	23	4950	7420	9600	12360		
60/1	19	4950	7420	9900	12360		
70/1	17	4950	7420	9900	12360		

Installation and Maintenance

Initial running

All units are supplied without oil except for the jPM unit first stage reduction, used on WM Series unit sizes 4,5,6, and 7.

First filling

Single Reduction Units

When installed and before running, the unit should be filled with new lubricant to the correct level as follows.

With the gear stationary, remove the filler and breather plug and oil level plug. Fill until the lubricant level is visible at the indicator (if fitted) or until lubricant overflows from oil level aperture.

Replace and secure both plugs. Care should be taken to avoid overfilling, as this may cause subsequent leakage.

Starting up

All units have been subjected to a short test before despatch to the customer, but it takes many hours running under full load for the gear to attain its highest efficiency. The gear may, if necessary, be put to work immediately on full load, but if circumstances permit, it is better for the ultimate life of the gear to run it in under gradually increasing load attaining the full load after about 20 to 40 hours. Reasonable precautions should, however, be taken to avoid overloads in the early stage of running. Temperature rise on the initial run will be higher than that eventually attained after the gear is fully run in.

Routine maintenance

The oil level in the unit should be regularly maintained and should be checked at least once a month.

To avoid false readings, examination of the oil level should be made with the gear stationary and to maintain free ventilation of the unit under all conditions, the breather hole in the filler plug should be kept clear at all times. In the case of double reduction units, ensure that maintenance requirements given above are applied to both 1st and 2nd stage reduction gears.

Changing oil

The oil should be changed completely at intervals depending upon the working conditions.

Grease lubrication of bearings

Where this feature is included, the bearing caps are fitted with a grease nipple or stauffer lubricator, which should be used to lubricate the bearings.

When mounted with wormshafts vertical, the top bearing requires grease lubrication. Standard units, therefore, need to be modified by the inclusion of a grease nipple and nylos ring adjacent to the top bearing. Customers must advise us of this requirement when placing enquiries and orders.

Couplings and bedplates

All couplings should be carefully fitted and shafts accurately aligned.

To prevent damage to the bearings, coupling half-bodies should not be hammered on to shafts.

Worm gear units and other drive components should be rigidly mounted on firm foundations to prevent movement and vibration which may affect the alignment of the shafts. Suitable bedplates can be supplied if required.

Abnormal ambient temperatures

If the gear unit is to be operated under extremes of temperature or humidity, special oils may be required and recommendations will be made on request.

Storage

All worm gear units stored or left inactive for long periods should be adequately protected, particularly those on exposed sites and those operating in corrosive atmospheres. The following precautions will generally be adequate, but advice on the protection of particular units will be given, if required.

If empty of oil: spray the gear case interior with rust preventative oil compatible with lubricant recommended for service conditions.

If filled with oil: operate at full speed once per month for not less than 10 minutes to ensure liberal coating of all internal parts with oil.

For indefinite storage: completely fill unit with oil ensuring complete submersion of all internal components. Shafts should be occasionally turned by hand. When unit is returned to service, drain and refill with new oil to correct level.

Spare parts

Information relating to spare parts is available on request.

RENOLD WM Series - Lubrication Information

Oil Lubrication

The correct fill of oil for the unit size and mounting position can be found in either the appropriate catalogue or the installation and maintenance guide. Only good quality oils should be used, such as those listed below, as the use of inferior or unsuitable products may cause rapid wear and possible damage to the gearbox. Some EP additives such as Sulphur can attack Bronze especially at operating temperatures above 80°C and therefore should be avoided.

Oils with three vicosity ranges (Light, medium and heavy) are listed below, the correct choice depends on the application, operating speed, load and temperature. Temperature and speed can often be the main factor as it affects the operating vicosity. If the unit runs below the catalogue rating and operates at a temperature below 60°C then a light grade oil should be used. Operating at catalogue rating with temperatures up to 100°C requires a medium grade, and with higher temperatures and loading heavy grade oils should be used. If the unit is operating with gear speeds below 2.5 m/s (500ft/min) then the next higher grade should be used. Using too heavy a grade than required will result in reduced efficiency, too light a grade will result in premature wear, if in doubt ask Renold Gears Technical Department.

Which Oil to Select

There are three main oils Mineral, Synthetic - Polyalphaolefin and Synthetic - Polyglycol. Mineral oils tend to be lower cost, have a shorter life and are less efficient. Synthetic - Polyalphaolefin can operate over a higher temperature range, are more efficient, give higher ratings and have a longer life and as such are preferred. The use of Synthetic - Polyglycol are not recommended without prior discussion with Renold as special paints and seals are required. If necessary a list of recommended food grade oils is available on request.

Mineral Oil		Light		Medium		Heavy	
		Temp°C		Temp°C		Temp°C	
Mobil Gear	630	-13 to 90	632	-13 to 90	634	-1 to 90	
Mobil DTE	BB	-7 to 90	AA	2 to 90	HH	2 to 90	
Castrol Optimol BM	220	-9 to 120	320	-9 to 120	460	-9 to 120	
Castrol MoLub - Alloy EP	220	-24 to 80	320	-18 to 80	460	-15 to 80	
Shell Vitrea	220	-24 to 120	320	-18 to 120	460	-15 to 120	
Shell Omala	220	-9 to 80	320	-9 to 80	460	-9 to 80	
Esso Teresso	220	-18 to 120	320	-12 to 120	460	-9 to 120	
Esso Spartan EP	220	-30 to 80	320	-27 to 80	460	-18 to 80	
Petro - Canada Harmony	220	-18 to 120	320	-12 to 120	460	-9 to 120	
Petro - Canada Ultima EP	220	-30 to 80	320	-27 to 80	460	-18 to 80	

Synthetic (Polyalphaolefin)	Light		Medium		Heavy	
		Temp°C		Temp°C		Temp°C
Mobil Gear SHC	630	-42 to 160	632	-42 to 160	634	-39 to 160
Shell Omala RL	220	-40 to 80	320	-40 to 80	460	-40 to 80
Esso Teresso SHP	220	-42 to 150	320	-36 to 150	460	-30 to 150
Petro - Canada Ultima Synthetic	220	-42 to 160	220	-42 to 160	460	-39 to 160

Single Reduction - Mounting & Handing

16

Single Reduction - Mounting & Handing

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 5/1 Preferred Ratio

luonut	0	Centre Distance	3.94″	4.92″	6.3″	7.87″
input	output	Actual Ratio : 1	5	5	5.38	5
rpm	rpm	Gear Ratings				
		Input kW, Thermal	31.6	50.7	76.1	136.7
		Output Torque Nm, Thermal	5233	8471	13696	22857
1800	360	Input kW, Mechanical	25.4	44.5	84.4	143.3
		Output Torque Nm, Mechanical	4196	7444	15191	23960
		Efficiency %	95%	96%	96%	96%
		Input kW, Thermal	27.1	43.0	64.7	116.8
		Output Torque Nm, Thermal	5375	8542	13975	23449
1500	300	Input kW, Mechanical	23.0	40.2	75.0	130.4
		Output Torque Nm, Mechanical	4566	7991	16203	26178
		Efficiency %	95%	95%	96%	96%
		Input kW, Thermal	22.5	35.6	53.3	96.5
		Output Torque Nm, Thermal	5588	8848	14245	24202
1200	240	Input kW, Mechanical	20.6	35.7	65.7	116.2
		Output Torque Nm, Mechanical	5123	8855	17538	29136
		Efficiency %	95%	95%	95%	96%
		Input kW, Thermal	19.6	30.8	45.8	82.8
		Output Torque Nm, Thermal	5766	9181	14689	24928
1000	200	Input kW, Mechanical	18.7	32.7	53.6	104.7
		Output Torque Nm, Mechanical	5518	9748	17180	31503
		Efficiency %	94%	95%	95%	96%
		Input kW, Thermal	15.9	24.8	36.7	65.7
		Output Torque Nm, Thermal	6267	9742	15691	26078
750	150	Input kW, Mechanical	15.6	27.4	52.3	90.5
		Output Torque Nm, Mechanical	6140	10774	22334	35946
		Efficiency %	94%	94%	95%	95%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 7.5/1 Non Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94″ 7.25	4.92″ 7	6.3″ 7.8	7.87″ 7.2
1800	240	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical	28.1 6717 18.6 4433	45.3 10493 31.1 7206	69.5 17954 61.6 15913	125.8 30301 104.2 25096
		Efficiency % Input kW, Thermal Output Torque Nm, Thermal	95% 24.0 6834	95% 38.5 10692	95% 59.0 18266	96% 106.8 30862
1500	200	Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	17.1 4872 94%	28.4 7909 95%	56.3 17435 95%	94.2 27218 96%
1200	160	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	20.0 7111 15.0 5355 94%	31.8 10921 25.4 8718 94%	48.4 18733 48.2 18681 95%	87.5 31278 84.3 30138 95%
1000	133	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	17.4 7366 13.4 5653 93%	27.5 11335 22.6 9306 94%	41.5 19100 41.5 19100 94%	74.8 32073 76.1 32625 95%
750	100	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	14.2 8008 11.4 6424 93%	22.2 12108 19.2 10431 93%	33.2 20374 36.2 22181 94%	59.1 33798 63.4 36250 95%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 10/1 Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94″ 9.66	4.92 <i>"</i> 9.33	6.3″ 10.25	7.87″ 9.75
1800	180	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	24.1 7631 16.4 5176 94%	38.9 11874 27.1 8287 94%	61.6 20912 56.3 19093 95%	112.4 36280 86.1 27779 95%
1500	150	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	20.5 7700 14.7 5503 93%	33.0 12087 24.8 9080 94%	52.1 21221 48.2 19639 95%	95.0 36791 79.3 30709 95%
1200	120	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	17.2 8053 12.8 6014 93%	27.3 12396 21.4 9692 93%	42.9 21591 41.5 20916 94%	77.6 37556 69.6 33677 95%
1000	100	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	14.9 8290 11.5 6432 92%	23.6 12833 19.3 10507 93%	36.7 22185 37.5 22671 94%	66.2 38046 61.8 35497 94%
750	75	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	12.3 9111 9.7 7229 92%	19.2 13753 16.2 11637 92%	29.5 23498 30.8 24566 93%	52.4 40152 52.5 40213 94%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 12.5/1 Non Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94″ 12.33	4.92″ 12	6.3″ 13.25	7.87″ 12
1800	144	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	20.6 8244 15.0 6006 93%	33.2 12921 26.8 10431 93%	54.0 23433 48.2 20933 94%	97.2 38586 90.5 35946 95%
1500	120	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	17.6 8325 13.3 6312 92%	28.3 13192 23.9 11141 93%	45.6 23724 42.9 22328 94%	82.0 38674 81.7 38510 94%
1200	96	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	14.7 8738 11.8 6999 92%	23.3 13452 20.9 12076 92%	37.5 24162 37.4 24076 93%	67.0 39496 70.5 41534 94%
1000	80	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	12.9 9052 10.6 7426 91%	20.2 14009 18.9 13062 92%	32.2 24852 32.2 24852 93%	57.1 40381 63.4 44836 94%
750	60	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	10.6 9823 8.8 8206 90%	16.5 15049 15.8 14401 91%	25.9 26361 28.1 28682 92%	45.2 42139 53.5 49929 93%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 15/1 Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94″ 15.5	4.92″ 15.5	6.3″ 15.33	7.87″ 14.33
1800	120	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	17.2 8457 13.7 6751 91%	28.7 14247 24.3 12083 92%	47.2 23429 42.9 21299 93%	86.2 40436 76.9 36109 94%
1500	100	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	14.6 8613 12.4 7301 91%	24.4 14540 21.8 13006 92%	39.8 23722 37.5 22364 93%	72.6 40901 68.8 38766 94%
1200	80	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	12.2 8890 10.9 7930 90%	20.2 14915 19.3 14233 91%	32.7 24099 33.5 24691 92%	59.2 41250 59.3 41269 93%
1000	67	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	10.7 9378 9.6 8433 90%	17.4 15409 17.1 15124 91%	28.1 24889 28.1 24889 92%	50.7 42333 53.9 45088 93%
750	50	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	8.8 10201 8.1 9368 89%	14.2 16568 14.4 16798 90%	22.8 26572 25.5 29698 91%	40.2 44315 45.1 49721 92%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 20/1 Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1	3.94″ 20.5	4.92″ 20	6.3″ 21.5	7.87″ 20
-		Gear Ratings				
		Input kW, Thermal	14.2	22.9	35.1	63.9
		Output Torque Nm, Thermal	9029	14370	23931	40975
1800	90	Input kW, Mechanical	9.9	17.4	34.2	55.4
		Output Torque Nm, Mechanical	6324	10908	23292	35529
		Efficiency %	89%	90%	91%	92%
		Input kW, Thermal	12.2	19.4	29.7	54.0
		Output Torque Nm, Thermal	9301	14622	24066	41090
1500	75	Input kW, Mechanical	9.0	15.9	30.3	48.9
		Output Torque Nm, Mechanical	6847	11980	24499	37236
		Efficiency %	89%	90%	90%	91%
		Input kW, Thermal	10.2	16.2	24.4	44.2
		Output Torque Nm, Thermal	9601	15083	24662	42059
1200	60	Input kW, Mechanical	7.8	13.9	25.2	43.6
		Output Torque Nm, Mechanical	7337	12971	25475	41498
		Efficiency %	88%	89%	90%	91%
		Input kW, Thermal	9.0	14.1	21.0	37.8
		Output Torque Nm, Thermal	10042	15529	25245	42656
1000	50	Input kW, Mechanical	7.0	12.5	21.4	38.9
		Output Torque Nm, Mechanical	7831	13764	25728	43926
		Efficiency %	87%	88%	89%	90%
		Input kW, Thermal	7.4	11.5	17.0	30.0
		Output Torque Nm, Thermal	10864	16766	26923	44675
750	38	Input kW, Mechanical	5.9	10.5	18.8	32.7
		Output Torque Nm, Mechanical	8648	15248	29679	48703
		Efficiency %	86%	87%	88%	89%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 25/1 Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94″ 25	4.92" 24	6.3″ 26	7.87″ 24
1800	72	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	10.9 8130 10.2 7607 86%	20.5 15257 14.3 10673 89%	31.4 25563 26.8 21849 90%	57.2 43537 47.9 36451 91%
1500	60	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	9.4 8431 9.1 8215 86%	17.4 15382 13.0 11453 88%	26.5 25668 24.1 23335 89%	48.2 43563 43.0 38868 90%
1200	48	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	7.8 8631 8.0 8872 85%	14.5 15973 11.2 12413 88%	21.8 26117 21.4 25636 88%	39.4 44471 37.9 42761 90%
1000	40	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	6.8 9000 7.2 9434 84%	12.6 16493 10.1 13183 87%	18.8 26918 18.1 25956 88%	33.8 45233 33.8 45215 89%
750	30	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	5.6 9647 6.0 10334 82%	10.3 17807 8.4 14551 86%	15.3 28893 15.8 29907 87%	26.8 47328 28.3 49978 88%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 30/1 Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Goar Patings	3.94″ 29	4.92″ 29	6.3″ 32	7.87″ 29
		Input kW, Thermal	10.3	16.6	25.3	53.9
		Output Torque Nm, Thermal	8965	14606	24847	48983
1800	60	Input kW, Mechanical	9.5	16.1	26.8	38.2
		Output Torque Nm, Mechanical	8223	14123	26293	34715
		Efficiency %	86%	87%	88%	90%
		Input kW, Thermal	8.8	14.1	21.4	45.3
		Output Torque Nm, Thermal	9114	14671	24955	49422
1500	50	Input kW, Mechanical	8.5	14.3	22.8	34.5
		Output Torque Nm, Mechanical	8719	14924	26514	37637
		Efficiency %	85%	86%	87%	90%
		Input kW, Thermal	7.5	11.8	17.7	37.0
		Output Torque Nm, Thermal	9553	15191	25439	49885
1200	40	Input kW, Mechanical	7.4	12.6	18.8	29.9
		Output Torque Nm, Mechanical	9439	16178	26980	40360
		Efficiency %	84%	85%	86%	89%
		Input kW, Thermal	6.6	10.2	15.3	31.6
		Output Torque Nm, Thermal	9911	15558	26057	50611
1000	33	Input kW, Mechanical	6.6	11.2	17.4	27.0
		Output Torque Nm, Mechanical	10012	17158	29714	43170
		Efficiency %	83%	84%	85%	88%
		Input kW, Thermal	5.5	8.4	12.5	25.3
		Output Torque Nm, Thermal	10791	16991	28009	53428
750	25	Input kW, Mechanical	5.5	9.4	16.3	22.1
		Output Torque Nm, Mechanical	10886	18838	36744	46644
		Efficiency %	81%	83%	84%	87%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 35/1 Non Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94" 35	4.92″ 34	6.3″ 37	7.87″ 34
1800	51	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	9.1 9333 7.3 7519 84%	14.9 14976 13.3 13387 85%	23.2 25700 20.6 22877 86%	43.1 44978 40.1 41793 88%
1500	43	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	7.8 9439 6.6 8056 83%	12.7 15200 11.8 14080 84%	19.7 26205 18.3 24315 86%	36.4 45074 35.7 44113 87%
1200	34	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	6.6 9848 5.8 8644 82%	10.6 15612 10.4 15391 83%	16.3 26869 16.1 26407 85%	29.9 45662 30.8 47075 86%
1000	29	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	5.8 10244 5.1 9146 81%	9.2 16166 9.2 16159 82%	14.1 27424 14.3 27925 84%	25.6 46932 28.0 51354 86%
750	21	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	4.8 11153 4.3 10019 79%	7.6 17589 7.8 17956 81%	11.4 28895 11.9 30289 82%	20.5 48960 23.3 55616 84%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 40/1 Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94″ 39	4.92" 39	6.3″ 42	7.87″ 39
1800	45	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	8.2 9122 6.0 6733 82%	13.5 15447 10.9 12416 84%	20.6 25667 20.8 25833 85%	38.6 45096 34.9 40821 86%
1500	38	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	7.1 9380 5.5 7242 81%	11.5 15596 9.8 13245 83%	17.6 25892 18.6 27473 84%	32.6 45660 31.1 43611 86%
1200	30	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	5.9 9613 4.8 7763 80%	9.6 16124 8.6 14313 82%	14.6 26609 16.1 29294 83%	26.8 46429 27.0 46730 85%
1000	25	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	5.2 9970 4.3 8127 78%	8.4 16724 7.6 15009 81%	12.6 27205 14.2 30678 82%	22.9 47075 24.3 49966 84%
750	19	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	4.4 11060 3.6 8996 77%	7.0 17928 6.4 16573 79%	10.3 29025 11.9 33548 80%	18.4 49269 20.3 54592 82%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 45/1 Non Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94" 45	4.92″ 44	6.3″ 48	7.87″ 44
1800	40	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	7.6 9580 5.3 6655 80%	12.7 16002 9.4 11858 82%	19.0 26411 14.9 20664 83%	34.4 44873 30.7 39949 85%
1500	33	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	6.6 9808 4.8 7112 79%	10.9 16273 8.5 12707 82%	16.1 26557 13.2 21861 82%	29.2 45139 27.6 42592 84%
1200	27	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	5.6 10324 4.1 7571 78%	9.1 16762 7.4 13557 80%	13.4 27227 11.6 23660 81%	24.1 46034 24.2 46136 83%
1000	22	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	5.0 10774 3.7 8071 77%	7.9 17234 6.5 14266 79%	11.7 28074 10.4 25096 80%	20.6 46692 21.7 49026 82%
750	17	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	4.2 11723 3.1 8777 75%	6.6 18842 5.5 15905 78%	9.5 29784 8.7 27364 78%	16.5 48511 18.0 52928 80%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 50/1 Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94" 49	4.92" 49	6.3″ 53	7.87″ 49
1800	36	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	7.2 9759 4.6 6163 79%	11.5 15935 8.1 11210 81%	17.6 26579 16.1 24347 82%	31.9 45733 26.4 37836 84%
1500	30	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	6.3 10064 4.2 6665 78%	9.9 16251 7.4 12078 80%	15.0 26937 14.7 26456 81%	27.1 46024 24.0 40852 83%
1200	24	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	5.4 10569 3.7 7266 77%	8.3 16594 6.3 12660 78%	12.5 27614 12.3 27317 80%	22.4 46989 21.2 44570 82%
1000	20	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	4.7 10953 3.2 7573 76%	7.2 17121 5.7 13602 77%	10.9 28500 10.7 28148 79%	19.2 47695 18.9 46961 81%
750	15	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	3.9 11782 2.8 8491 74%	6.0 18529 4.9 14947 75%	8.8 30179 9.6 32922 77%	15.4 49879 15.9 51527 79%

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 60/1 Preferred Ratio

Input rpm	Output rpm	Centre Distance3.94"4.92"Actual Ratio : 15959Gear Ratings5959		4.92" 59	6.3″ 63	7.87″ 59	
1800	30	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	6.6 10258 3.5 5411 76%	10.5 16758 6.1 9784 78%	15.8 27765 13.4 23529 80%	28.8 47969 19.9 33132 81%	
1500	25	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	5.6 10412 3.2 5999 75%	9.0 17052 5.6 10639 77%	13.5 27805 12.1 24777 78%	24.4 48727 18.6 37108 81%	
1200	20	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	4.7 10701 2.8 6390 74%	7.5 17584 5.0 11744 76%	11.3 28535 10.5 26497 77%	20.1 48960 16.5 40213 79%	
1000	17	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	4.3 11582 2.5 6768 73%	6.6 18221 4.4 12271 75%	9.8 29372 9.4 28165 76%	17.4 50274 14.6 42114 78%	
750	13	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	3.6 12673 2.1 7228 71%	5.5 19786 3.7 13271 73%	8.0 31341 7.4 28729 74%	13.9 52251 12.2 45870 76%	

WM Series - Single Reduction - Selection Data

Synthetic Oils

Nominal ratio: 70/1 Preferred Ratio

Input rpm	Output rpm	Centre Distance Actual Ratio : 1 Gear Ratings	3.94" 69	4.92" 69	6.3″ 74	7.87″ 69
1800	26	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	5.5 9509 2.8 4847 72%	8.8 15733 4.9 8653 74%	13.4 26256 12.1 23630 76%	24.1 45227 15.9 29850 78%
1500	21	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	4.8 9880 2.7 5434 71%	7.5 15802 4.5 9560 73%	11.4 26429 10.1 23319 75%	20.5 45540 14.9 33069 77%
1200	17	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	4.0 10147 2.4 5953 70%	6.4 16699 4.1 10715 72%	9.5 26859 8.6 24211 73%	16.9 46271 13.4 36759 76%
1000	14	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	3.6 10646 2.1 6072 68%	5.6 17047 3.7 11162 70%	8.3 27759 7.4 24625 72%	14.7 47198 12.1 38703 74%
750	11	Input kW, Thermal Output Torque Nm, Thermal Input kW, Mechanical Output Torque Nm, Mechanical Efficiency %	3.1 11736 1.8 6735 66%	4.7 18400 3.1 12144 68%	6.8 29600 5.8 24957 70%	11.8 48984 10.2 42249 72%

WM Series - Speed Reducer - Dimensions (inch)

TYPE WMSM - SHAFT MOUNTED

Output Sleeve

Size	A	В	B1	с	D	н	L	к	L
WM100	3.94	4.17	4.75	8.86	8.86	4.23	4.04	0.94	2.56
WM125	4.92	4.41	5.75	10.83	10.04	4.92	4.43	0.94	2.95
WM160	6.30	4.92	6.75	12.20	11.61	5.71	4.72	1.10	3.35
WM200	7.87	5.51	8.75	13.50	13.98	6.79	5.22	1.10	3.94

Size	Q	R	R1	т	U	U1	Oil Capacity (approx) Imp. Pints	Weight (approx) Ibs
WM100	5.51	4.92	4.92	9.45	0.91	0.98	4.0/4.8	160
WM125	6.50	5.51	5.51	11.10	1.18	1.26	5.8/8.3	260
WM160	6.89	6.10	6.10	12.48	1.26	1.26	7.9/12.5	370
WM200	8.86	6.69	6.69	13.90	1.26	1.50	13.6/25.2	640

* - Min/Max dependant on mounting positions.

INPUT SHAFT

Size	E1	F	V1	W1	X2
WM100	2.36	1.375 1.374	1.201	0.312	2.20
WM125	3.23	1.625 1.624	1.416	0.375	2.875
WM160	4.21	1.875 1.874	1.591	0.5	4.09
WM200	3.82	2.000 1.999	1.718	0.5	3.625

OUTPUT SLEEVE

G2	V3	W3	D3
2.56	2.161	0.5	4.33
2.76	2.684	0.625	5.12
3.54	3.207	0.75	6.10
4.53	3.762	0.875	6.85
	G2 2.56 2.76 3.54 4.53	G2 V3 2.56 2.161 2.76 2.684 3.54 3.207 4.53 3.762	G2 V3 W3 2.56 2.161 0.5 2.76 2.684 0.625 3.54 3.207 0.75 4.53 3.762 0.875

Foot Mounted Worm Gear Units - Single Reduction - Dimensions (mm)

TYPE WMU - UNDERDRIVEN

Output Shaft

Shaft Assemblies

自自信

11 12 13

Size	A	В	B1	с	D	н	J	К	L
WM100	3.94	4.17	4.75	8.86	8.86	4.23	4.04	0.94	2.56
WM125	4.92	4.41	5.75	10.83	10.04	4.92	4.43	0.94	2.95
WM160	6.30	4.92	6.75	12.20	11.61	5.71	4.72	1.10	3.35
WM200	7.87	5.51	8.75	13.50	13.98	6.79	5.22	1.10	3.94

Size	Q	R	R1	т	U	U1	Oil Capacity (approx) Imp. Pints	Weight (approx) Ibs
WM100	5.51	4.92	4.92	9.45	0.91	0.98	4.1	160
WM125	6.50	5.51	5.51	11.10	1.18	1.26	5.9	260
WM160	6.89	6.10	6.10	12.48	1.26	1.26	8.1	370
WM200	8.86	6.69	6.69	13.90	1.26	1.50	13.8	640

INPUT SHAFT

Size	E1	F	V1	W1	X2
WM100	2.36	1.375 1.374	1.201	0.312	2.20
WM125	3.23	1.625 1.624	1.416	0.375	2.875
WM160	4.21	1.875 1.874	1.591	0.5	4.09
WM200	3.82	2.000 1.999	1.718	0.5	3.625

OUTPUT SLEEVE

E2	G	V2	W2	Y2	Tapped Hole
3.94	2.000 1.999	1.718	0.5	3.94	3/4" UNF
4.33	2.500 2.499	2.148	0.625	4.33	3/4" UNF
4.92	3.000 2.999	2.577	0.75	4.92	7/8" UNF
6.50	3.500 3.499	3.007	0.875	6.50	7/8" UNF

Foot Mounted Worm Gear Units - Single Reduction - Dimensions (mm)

TYPE WMO - OVERDRIVEN

Input Shaft X2 X1

Output Shaft

Shaft Assemblies

12

Size	Α	В	B1	c	D	н	L	к	L
WM100	3.94	4.17	4.75	8.86	8.86	4.23	4.04	0.94	2.56
WM125	4.92	4.41	5.75	10.83	10.04	4.92	4.43	0.94	2.95
WM160	6.30	4.92	6.75	12.20	11.61	5.71	4.72	1.10	3.35
WM200	7.87	5.51	8.75	13.50	13.98	6.79	5.22	1.10	3.94

Size	Q	R	R1	т	U	U1	Oil Capacity (approx) Imp. Pints	Weight (approx) Ibs
WM100	5.51	4.92	4.92	9.45	0.91	0.98	4.1	160
WM125	6.50	5.51	5.51	11.10	1.18	1.26	5.9	260
WM160	6.89	6.10	6.10	12.48	1.26	1.26	8.1	370
WM200	8.86	6.69	6.69	13.90	1.26	1.50	13.8	640

INPUT SHAFT

Size	E1	F	V1	W1	X2
WM100	2.36	1.375 1.374	1.201	0.312	2.20
WM125	3.23	1.625 1.624	1.416	0.375	2.875
WM160	4.21	1.875 1.874	1.591	0.5	4.09
WM200	3.82	2.000 1.999	1.718	0.5	3.625

OUTPUT SLEEVE

E2	G	V2	W2	Y2	Tapped Hole
3.94	2.000 1.999	1.718	0.5	3.94	3/4" UNF
4.33	2.500 2.499	2.148	0.625	4.33	3/4" UNF
4.92	3.000 2.999	2.577	0.75	4.92	7/8" UNF
6.50	3.500 3.499	3.007	0.875	6.50	7/8" UNF

34

Foot Mounted Worm Gear Units - Single Reduction - Dimensions (mm)

TYPE WMV - VERTICAL

VIEW ON OUTPUT FLANGE (Reduced)

Æ

Shaft Assemblies

Input Shaft

Size	A	В	B1	B2	с	D	1	К1	м
WM100	3.94	4.17	5.91	6.30	8.86	8.86	0.15	0.59	10.43
WM125	4.92	4.41	7.09	7.09	10.83	10.04	0.15	0.75	11.81
WM160	6.30	4.92	8.35	7.87	12.20	11.61	0.15	0.75	13.78
WM200	7.87	5.51	10.43	8.35	13.50	13.98	0.31	0.75	15.75

ON M PCD NOTE - SLOTS POSITIONED AS APPROPRIATE

Size	Q	R	Q1	Q2	т	U1	U2	Oil Capacity (approx) Imp. Pints	Weight (approx) Ibs
WM100	5.51	4.92	11.81	9.06	9.45	0.63	0.24	4.8	195
WM125	6.50	5.51	13.78	9.84	11.10	0.75	0.276	8.3	295
WM160	6.89	6.10	15.75	11.81	12.48	0.63	0.276	12.5	415
WM200	8.86	6.69	17.72	13.78	13.90	0.94	0.276	25.2	730

INPUT SHAFT

Size	E1	F	V1	W1	X2
WM100	2.36	1.375 1.374	1.201	0.312	2.20
WM125	3.23	1.625 1.624	1.416	0.375	2.875
WM160	4.21	1.875 1.874	1.591	0.5	4.09
WM200	3.82	2.000 1.999	1.718	0.5	3.625

OUTPUT SLEEVE

E2	G	V2	W2	Y2	Tapped Hole
3.94	2.000 1.999	1.718	0.5	3.94	3/4" UNF
4.33	2.500 2.499	2.148	0.625	4.33	3/4" UNF
4.92	3.000 2.999	2.577	0.75	4.92	7/8" UNF
6.50	3.500 3.499	3.007	0.875	6.50	7/8" UNF

CANADA

Renold Canada Ltd Head Office & Ontario District 121 Roy Boulevard, Brantford, Ontario N3T 5N4 Toll Free Tel: 800 265 9970 Tel: (519) 756 6118 Fax: (519) 756 1767 Email: inquiry@renoldcanada.com

Quebec District 622 rue De Hull, Ville La Salle, Quebec H8R 1V9 Toll Free Tel: 800 361 1414 Tel: (514) 367 1764 Fax: (514) 367 4993

Western District Toll Free Tel: 800 265 9970 Fax: 800 661 6118

Atlantic and Manitoba District Toll Free Tel: 800 265 9970 Fax: 800 661 6118

USA

Renold Power Transmission Corporation 8750 Global Way, West Chester, Ohio 45069 Tel: (513) 942 1000 Fax: (513) 942 8500 E-mail: rptc@fuse.net

Renold Incorporated 100 Bourne Street Westfield, NY 14787 Toll Free Tel: 1 800 879 2529 Fax: 716 326 8229

WEB www.renold.com

For other country distributors please contact Renold UK.

www.renold.com